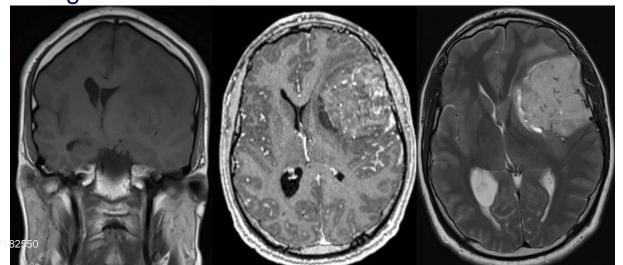


WHO CLASSIFICATION OF BRAIN TUMORS AND APPROACH TO LOWER GRADE GLIOMAS

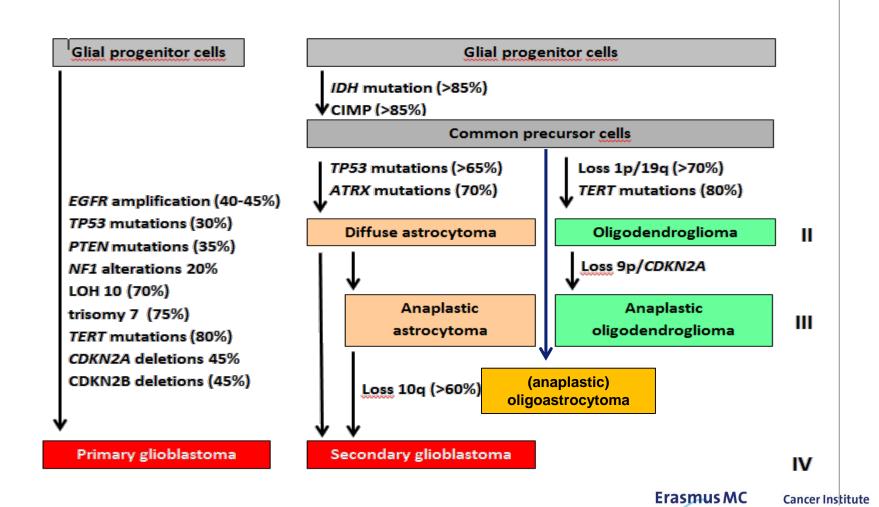
M.J. van den Bent the Brain Tumor Center at Erasmus MC Cancer Center Rotterdam, the Netherlands

Disclosures


Honoraria from Celgene, Bayer, Boehringer, Agios, BMS, Carthera

- Learning objectives:
- Understand the molecular basis of the 2016 WHO glioma classification
- Understand prognostic factors in IDH mutated glioma
- Understanding of the role of adjuvant chemotherapy in glioma

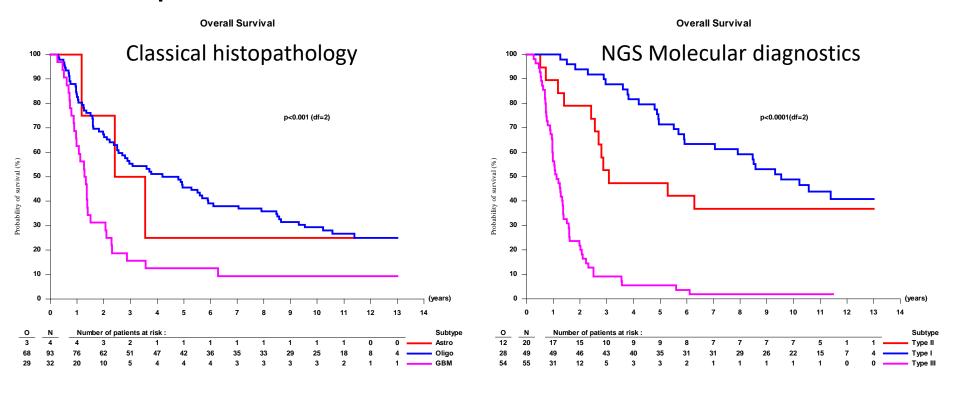
A 40 year old male with headache and difficulty walking


- 40 year old male with a short history headache and difficulty walking
- MRI: left frontal enhancing tumor; June 2016: partial resection
- Histopathology: glioblastoma
- Sequencing: IDH2 mutation, combined 1p/19q loss and deletion of chromosome 9
- Molecular diagnosis: anaplastic oligodendroglioma?
- Treated with RT/TMZ, 2 years later still doing well
- Diagnosis?

Erasmus MC 2 afus

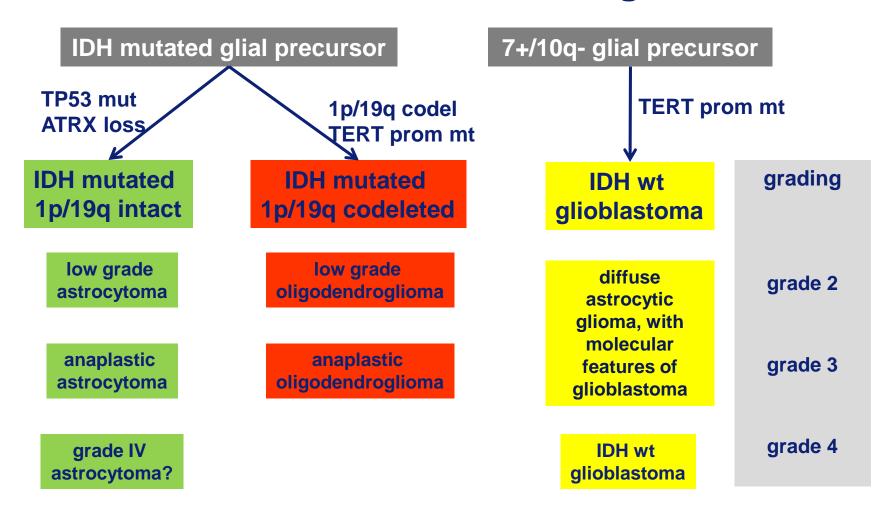
Cancer Institute

WHO 2007 – diffuse glioma (histology based)


zafuns

Shortcomings of the classical histopathological classification of gliomas

- Poor reproducibility of diagnosis in grade II and grade III tumors¹
 - Both with respect to lineage and grade
 - 25-33% of cases
- Based on morphological resemblance and clinical outcome (prognosis)
 - Not a functional approach
 - Not correlated to outcome to specific treatments
- Data from studies conducted in 2013-2016 showed improved classification of diffuse glioma and demonstrated improved prognostication using few molecular markers:
 - IDH 1,2 mutations, codeletion 1p/19, TERT promoter mutations, combined trisomy 7/LOH10q



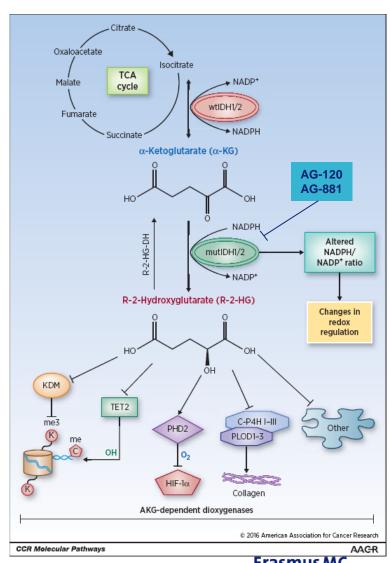
WHO 2016: Molecular diagnostics with NGS improves the classification of brain tumors

tumor	Molecular characteristics
oligodendroglioma	IDH mutated, 1p/19q loss
 astrocytoma	IDH mutated
 glioblastoma	LOH10q & trisomy 7, or TERT mutated but no 1p/19q loss

A modified WHO 2016 for diffuse glioma

Key Points from the 2016 WHO Glioma Classifications and cIMPACT-NOW revisions

- Key role in the classification for IDH and 1p/19q¹
- Not Otherwise Specified (NOS): intended for use for cases that could not be tested or in which testing was not successful¹
- Oligoastrocytoma is only classified if NOS¹
 - No clear molecular correlate: either 1p/19q co-deleted, IDH mt or only IDH mt¹
- Gliomatosis cerebri has disappeared as an entity¹
- IDHwt low grade astrocytoma with molecular features of glioblastoma: perception of grade IV
- Changing name for glioblastoma, IDHmt?



IDH mutation: a tumor driving mutation through altered enzym substrate affinity?

IDHmt onco-protein: decreased levels of α-ketoglutaraat, accumulation of 2-HG

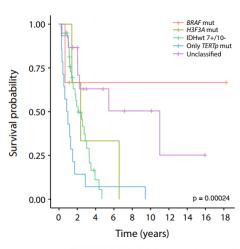
- 2HG inhibits a wide range of α-KG dependent dioxygenases
- Epigenetic dysregulation via inhibition of αKGdependent histone and DNA demethylases, resulting in CIMP, MGMT methylation
- Block of cellular differentiation
- Pathological self renewal of stem like progenitor cells?
- Upregulation of PI3K/mTOR signaling
- Contributes to the immosuppressive landscape of gliomas

Erasmus MC

Other molecular entities in the WHO classification

- Partial introduction of histone 3 mutations as a separate entity¹
 - Limited to H3F3A-mutated only¹
 - Diffuse mideline glioma with K27M mutation: very poor prognosis,
 MGMT not methylated (diffuse pontine glioma, thalamus glioma)
- Molecular subgroups of medulloblastoma with different outcome
- Ependymoma sublassification: RELA fusion hemisperic ependymoma

Acta Neuropathologica https://doi.org/10.1007/s00401-018-1913-0


CORRESPONDENCE

cIMPACT-NOW update 3: recommended diagnostic criteria for "Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV"

Daniel J. Brat¹ · Kenneth Aldape² · Howard Colman³ · Eric C. Holland⁴ · David N. Louis⁵ · Robert B. Jenkins⁶ · B. K. Kleinschmidt DebMasters⁷ · Arie Perry⁸ · Guido Reifenberger^{9,10} · Roger Stupp¹¹ · Andreas von Deimling ^{12,13} · Michael Weller¹

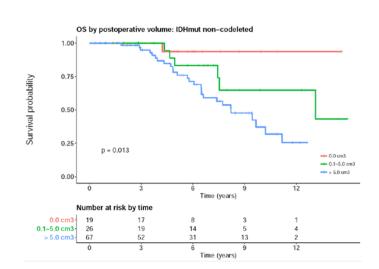
- Criteria for diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma:
 - Histologically grade II, III astrocytoma, IDHwt, with
 - EGFR amplification (high level)or
 - Combined whole chr 7 gain and whole chr 10 loss (+7/-10)
 or
 - TERT promoter mutation
- Erasmus MC series:
 - 74 IDHwt: 39 7+/10q- (38 TERTp mt), 14 only
 - Prognosis even worse in TERTp mt only

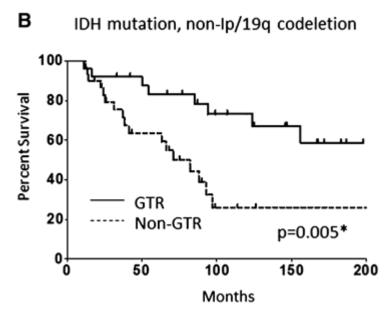
Erasmus MC

Cancer Institute

OS in molecularly defined anaplastic glioma as reported in large phase III trials

study	histology	Molecular subtype	treatment	n	Median OS	Median PFS
RTOG 9802	Low grade glioma	IDH mutated (all) IDHwt	RT/PCV or RT RT/PCV or RT	71 42	13.1 yrs 5.1 years	
EORTC 26951	Anaplastic oligodendroglioma	1p/19q codeleted IDHmt 1p/19q intact 7+/10q-/TERTpmt	RT/PCV RT/PCV RT or RT/PCV	43 23 55	NR (>14 yrs) 8.3 yrs 1.13 yrs	147 4.2 yrs NS
RTOG 9402	Anaplastic oligodendroglioma	1p/19q IDHmt (all)	RT/PCV	59	14.7 yrs	8.4 yrs
RTOG 9804	Anaplastic astrocytoma	IDH mt (IHC) IDHwt	RT/chemo	49 54	7.9 yrs 2.8 yrs	
NOA4	Grade III	1p/19q codeleted IDHmt 1p/19q intact IDHwt	RT or chemo	66 83 58	NR 7.0-7.3 yrs 3.1 – 4.7 yrs	


Anaplastic glioma	Reported survival after RT/chemo			
Oligodendroglioma, IDHmut & 1p/19q codeleted		> 14 years		
Astrocytoma, IDH mutated		7 - 8 years		
Astrocytoma IDH wt		1 – 4.7 yrs		

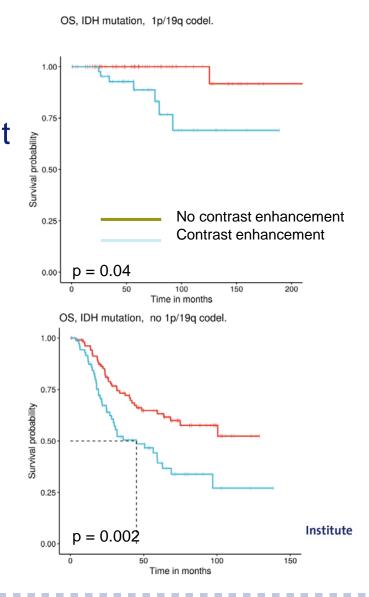


Extent of resection in IDHmt Astrocytoma

- Series on low grades, anaplastic IDHmt astrocytoma^{1, 2}
- Both show early and significant effect from less than total resection on OS
- 2nd look surgery in case of less than complete resection?
- Bias remains: smaller tumors more likely to get extensively resected
- Less impact tumor residu in oligodendroglioma

¹Wijnenga et al Neurooncol 2017 doi:10.1093/neuonc/nox176 ²Kawaguchi et al, J Neurooncol 2016;129:505-14

Prognosis in grade II, III glioma

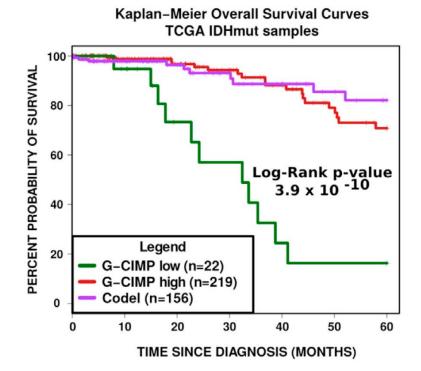

- Depends on a combination of clinical and molecular factors
- Some clinical factors known
- Molecular factors within the WHO 2016 classification still to be unravelled

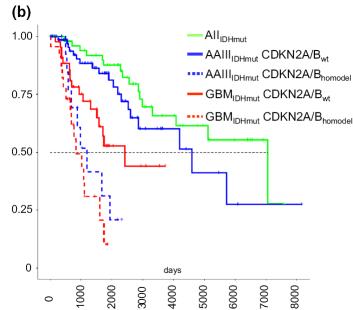
Erasmus MC Zafus

Cancer Institute

Contrast enhancement and outcome in IDHmt grade II and III tumors

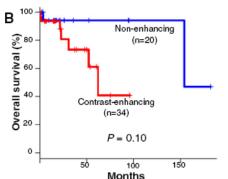
- Series on 301 grade II and III glioma
 - 208 IDHmt
- Grade III tumors more likely to present with CE (60.8%) than WHO II tumors (26.5%, p<0.001).
- CE on initial MR imaging prognostic for survival in IDH mt tumors
 - No impact in IDHwt tumors
- With dependence on volume (p<0.05)
 - IDHmt: HR 0.31 (0.14 -0.69)
 - IDHmt 1p/19q codel: HR 0.08 (0.01 0.69)

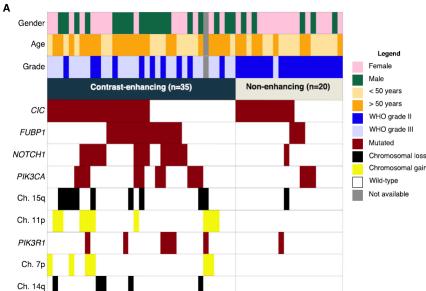


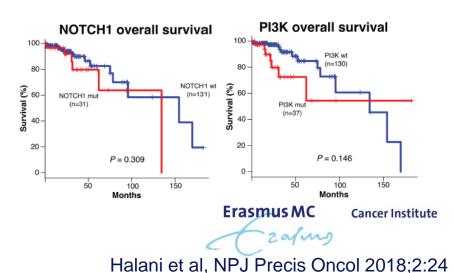

Suchorska et al, Eur J Canc 2019;107:15-27

Methylation, CIMP, IDH

- Most IDHmt tumors show CpG Island
 Methylated Phenotype (CIMP)
- In 95% includes MGMT promoter
- In astrocytoma, IDHmt reported worse outcome in
 - G-CIMP low
 - Necrosis and homozygous deletion CDKN2A/B
 - 7 hypomethylated CpG sites
 - Total CNA

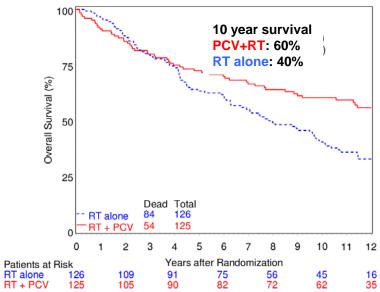

Shirahata et al, Acta Neuropathol 2018; Cecarelli et al, Cell 2016:164:550-63; Ferreira de Souza, Cell Reports 2018:23:637-51

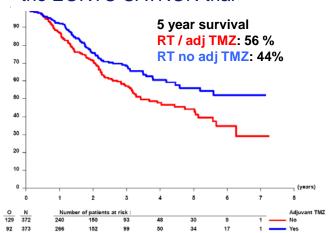


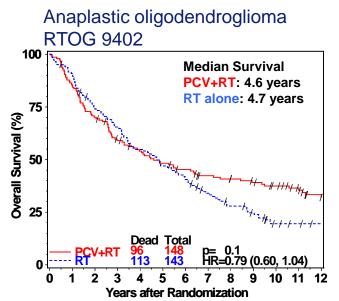


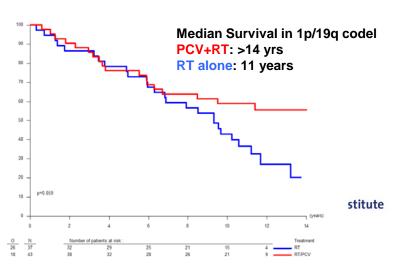
Multi-faceted computational assessment of risk and progression in oligodendroglioma implicates NOTCH and PI3K pathways

- CE+ tumors, high proliferation markers worse outcome
- Notch pathway inactivation and PI3K pathway activation associated with MRI and pathology findings of advanced disease and poor clinical outcome.

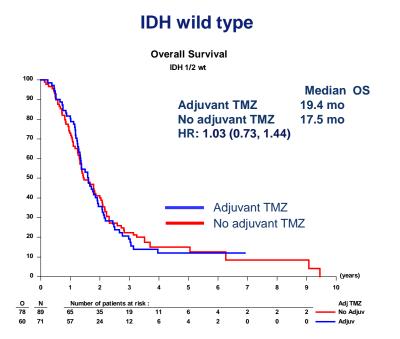


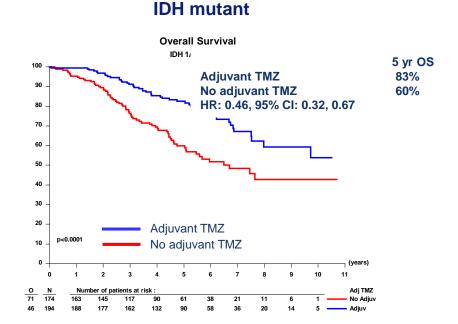



And chemo for all grade II and III glioma! Four trials that changed the standard of care



1p/19q intact anaplastic astrocytoma: the EORTC CATNON trial





1p/19q codeleted anaplastic oligodendroglioma: EORTC 26951

The CATNON trial: Adjuvant temozolomide in IDHwt and IDHmt anaplastic astrocytoma

Adjuvant temozolomide improves outcome in IDH mutant anaplastic astrocytoma

EORTC 26951: Quality of Surival in a cohort with long term follow-up

Evaluation of cognitive functioning:

- Progression-free patients (n=27): highly variable
 - 44% no cognitive impairments
 - 30% severe cognitive impairments
- Treatment (small subgroups): additional PCV not associated with worse cognition
- 41% were employed and 81% could live independently
- Progressive disease (n=5): more cognitive impairments
- Does this warrant postponement of RT?

EORTC IDHmut grade II/III Study: Wait Or Treat?

Random

Primary endpoint: Next Intervention Free Survival

Secondary endpoints:

OS, QoL, Neurocognitive function Radiogenomics, 2nd surgery question Tissue collection

IDH mutated Absence of 1p/19q co-deletion No indication for immediate RT/CTX

Stratification: *center, age*

Radiotherapy

50.4 Gy (28 x 1.8 Gy)

Then: 12 cycles Temozolomide

200 mg/m2 day 1-5/28 days

Wait and See

Further treatment at PD (2nd Surgery, RT/TMZ)

EORTC The future of cancer therapy

Some conclusions

- The WHO 2016 molecular based classification is more robust in terms of specificity and sensitity, with improved prognostication
 - Histology deceives...
- Currently based on mutational analysis and copy number alterations
- For all diffuse grade II, III astrocytoma, oligodendroglioma: standard of care radiotherapy with chemotherapy
 - Benefit in particular in IDHmt tumors
- Low grade tumors with molecular features of glioblastoma: to be considered as glioblastoma

